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3.3. Produit de deux variables aléatoires indépendantes 19
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CHAPITRE IX 2

1. Couples de variables aléatoires discrètes

1.1. Loi conjointe.

Soit X et Y deux variables aléatoires discrètes définies sur un espace probabilisé (Ω,A, P ). On
appelle loi conjointe la loi de probabilité du couple (X;Y ). C’est la donnée :

� des supports X(Ω) = {x1, x2, . . . , xi, . . .} et Y (Ω) = {y1, y2, . . . , yj , . . .} (ensembles finis
ou infinis) ;

� des probabilités pij = P
(
[X = xi] ∩ [Y = yj ]

)
pour tout xi ∈ X(Ω) et yj ∈ Y (Ω).

Définition : Loi conjointe

La loi d’un couple de variables est donc indexée par des couples d’indices. Remarquons tout de suite
qu’il n’y a aucune raison que les deux variables X et Y soient indépendantes et donc

pij = P
(
[X = xi] ∩ [Y = yj ]

)
6= P (X = i) · P (Y = j)

en général.

Remarque 1.1.1. Si X et Y sont des variables aléatoires finies, de supports respectifs

X(Ω) = {x1, x2, . . . , xn} et Y (Ω) = {y1, y2, . . . , ym},

on peut présenter les résultats sous forme d’un tableau :

(X,Y ) y1 y2 · · · ym
x1 p11 p12 · · · p1m

x2 p21 p22 · · · p2m
...

...
...

. . .
...

xn pn1 pn2 · · · pnm

Remarque 1.1.2. La loi conjointe du couple (X,Y ) est une loi de probabilité, on a donc pij > 0 pour
tous i et j tels que xi ∈ X(Ω) et yj ∈ Y (Ω), et :

∑
xi∈X(Ω)

 ∑
yj∈Y (Ω)

pij

 =
∑

yj∈Y (Ω)

 ∑
xi∈X(Ω)

pij

 = 1

ces sommes étant des sommes finies ou des sommes de séries (nécessairement convergentes donc).

Pour donner la loi conjointe, il faut donc calculer les probabilités P
(
[X = xi] ∩ [Y = yj

]
) pour

tout xi ∈ X(Ω) et yj ∈ Y (Ω). Il y a plusieurs méthodes :

� Si on est dans une situation d’équiprobabilité et si X et Y sont finies, on peut procéder par
dénombrement, en comptant le nombre d’issues réalisées par l’événement [X = xi]∩ [Y =
yj ] puis en divisant par le nombre total d’issues Card(Ω).

� Sinon, on peut utiliser les probabilités conditionnelles :

P
(
[X = xi] ∩ [Y = yj ]

)
= P (X = xi)P[X=xi](Y = yj)

si on connâıt la loi de X, ou :

P
(
[X = xi] ∩ [Y = yj ]

)
= P (Y = yj)P[Y =yj ](X = xi)

si on connâıt la loi de Y .

Méthode : Obtention de la loi conjointe
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Exemple 1.1.3. On lance deux dés équilibrés à 4 faces. On note X le maximum des deux résultats et
Y le minimum. Donnons la loi du couple (X,Y ).

On vérifie qu’on obtient le tableau ci-contre
pour la loi conjointe de X et Y :

(X,Y ) 1 2 3 4

1 1
16 0 0 0

2 2
16

1
16 0 0

3 2
16

2
16

1
16 0

4 2
16

2
16

2
16

1
16

Simulation informatique :

1 import numpy.random as rd

2 import numpy as np

3

4

5 def lancer ():

6 z = rd.randint(1, 5, 2) # contient le lancer de deux des

7 x = max(z)

8 y = min(z)

9 return [x, y]

10

11 # estimation de la loi du couple (x,y)

12

13 N=1000

14

15

16 Loi = np.zeros ((4 ,4))

17 for i in range(N) :

18 [x, y] = lancer ()

19 Loi[x-1, y-1] = Loi[x-1, y-1] + 1 # attention aux conventions d’indices

20

21 Loi = Loi/N

22

23 print(Loi)

1 [[0.056 0. 0. 0. ]

2 [0.14 0.051 0. 0. ]

3 [0.129 0.129 0.06 0. ]

4 [0.116 0.135 0.124 0.06 ]]

5

6

7 [[0.057 0. 0. 0. ]

8 [0.128 0.062 0. 0. ]

9 [0.133 0.133 0.085 0. ]

10 [0.118 0.119 0.099 0.066]]

Résultat de deux exécutions

On peut représenter ensuite les fréquences d’apparition des réalisations de la loi du couple en un
diagramme 3D (le programme qui permet de construire ce genre de diagramme n’est pas au programme,
il est disponible en annexe de ce cours sur ma page Web) :



CHAPITRE IX 4

Histogramme empirique

Exemple 1.1.4. On dispose d’une urne avec 2 boules blanches, 2 boules noires et 3 boules rouges. On
tire simultanément 3 boules de cette urne. On note X le nombre de rouges tirées et Y le nombre de
noires. Donnons la loi du couple (X,Y ).

On vérifie qu’on obtient le tableau suivant pour la loi conjointe de X et Y :

(X,Y ) 0 1 2

0 0 2
35

2
35

1 3
35

12
35

3
35

2 6
35

6
35 0

3 1
35 0 0

Exemple 1.1.5. On dispose d’un sac contenant 6 jetons dont 2 sont rouges dans lequel on prélève
simultanément 3 jetons. Si on a obtenu k jetons rouges dans le tirage, on lance k fois une pièce de
monnaie dont la probabilité de tomber sur pile vaut 3

5 .
On note X le nombre de boules rouges contenues dans le tirage et Y le nombre de piles obtenu lors

des lancers. Cherchons la loi du couple (X,Y ).
On vérifie qu’on obtient le tableau suivant pour la loi conjointe de X et Y :

(X;Y ) 0 1 2

0 1
5 0 0

1 3
5 ·

2
5 = 6

25
3
5 ·

3
5 = 9

25 0

2 1
5 ·
(

2
5

)2
= 4

125
1
5 ·2 ·

3
5 ·

2
5 = 12

125
1
5 ·
(

3
5

)2
= 9

125

Exemple 1.1.6. On lance une pièce une infinité de fois. On note p ∈]0; 1[ (et q = 1− p) la probabilité
d’obtenir pile. Soit X le rang du premier pile et Y le rang du deuxième pile. Donner la loi conjointe
de X et Y puis vérifier qu’on a bien une loi de probabilité.

1.2. Lois marginales. Si l’on connâıt la loi du couple (X,Y ), on peut en déduire les lois de X et Y ,
appelées lois marginales, par la formule des probabilités totales. C’est une situation très classique :
parfois il apparâıt plus naturellement la loi du couple et il faut être capable d’en déduire les lois
marginales.

Soit (X,Y ) un couple de variables aléatoires réelles discrètes. On a alors :
Théorème : Lois marginales
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� Pour tout xi ∈ X(Ω),

P (X = xi) =
∑

yj∈Y (Ω)

P
(
[X = xi] ∩ [Y = yj ]

)
.

La loi de X est appelée première loi marginale du couple (X,Y ).

� Pour tout yj ∈ Y (Ω),

P (Y = yj) =
∑

xi∈X(Ω)

P
(
[X = xi] ∩ [Y = yj ]

)
.

La loi de Y est appelée seconde loi marginale du couple (X,Y ).

Démonstration. À compléter. �

Remarque 1.2.1. Dans le cas fini, P (Y = y1) est la somme de la première colonne du tableau donnant
la loi conjointe. De même pour P (Y = yj) avec j > 1, et pour P (X = xi) (avec i > 1) qui est la
somme de la i-ème ligne du tableau donnant la loi conjointe.

On peut compléter le tableau de la façon suivante :

(X,Y ) y1 y2 · · · ym Somme
x1 p11 p12 · · · p1m P (X = x1)
x2 p21 p22 · · · p2m P (X = x2)
...

...
...

. . .
...

...
xn pn1 pn2 · · · pnm P (X = xn)

Somme P (Y = y1) P (Y = y2) · · · P (Y = ym) 1

Exemple 1.2.2. Dans l’exemple 1.1.3, on obtient les lois marginales :

(X,Y ) 1 2 3 4 Somme

1 1
16 0 0 0 1

16
2 2

16
1
16 0 0 3

16
3 2

16
2
16

1
16 0 5

16
4 2

16
2
16

2
16

1
16

7
16

Somme
7
16

5
16

3
16

1
16 1

i 1 2 3 4

P (X = i) 1
16

3
16

5
16

7
16

j 1 2 3 4

P (Y = j) 7
16

5
16

3
16

1
16

Simulation informatique : à partir de la matrice contenant l’estimation des probabilités de la loi du
couple, on fait les sommes en ligne ou en colonne pour obtenir les estimations des probabilités pour
X et Y :

On reprend le début du programme qui nous a servi à simuler la loi du couple (X,Y ).
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1 (...)

2

3 # estimation des lois marginales

4

5 import mathplotlib.pyplot as plt

6

7 LoiX =[0]*4

8 LoiY =[0]*4

9 for i in range (4) :

10 LoiX[i] = 0

11 LoiY[i] = 0

12 for j in range (4):

13 LoiX[i]=LoiX[i] + Loi[i,j] # somme de la ligne i

14 LoiY[i]=LoiY[i] + Loi[j,i] # somme de la colonne i

15

16 print(LoiX ,LoiY)

17

18

19 fig = plt.figure ()

20 x = [1,2,3,4]

21 height = LoiY

22 width =0.2

23 plt.bar(x,height ,width ,color=’darkviolet ’)

24

25 plt.show()

1 0.056 0.193 0.321 0.43

2

3 0.462 0.287 0.182 0.069

Lois marginales

Exemple 1.2.3. Dans l’exemple 1.1.4, on obtient les lois marginales :

(X,Y ) 0 1 2 Somme

0 0 2
35

2
35

4
35

1 3
35

12
35

3
35

18
35

2 6
35

6
35 0 12

35
3 1

35 0 0 1
35

Somme
10
35

20
35

5
35 1

i 0 1 2 3

P (X = i)
4

35
18
35

12
35

1
35

j 0 1 2

P (Y = j) 10
35 = 2

7
20
35 = 4

7
5
35 = 1

7

Exemple 1.2.4. Dans l’exemple 1.1.5, on obtient la loi marginale de Y :

j 0 1 2

P (Y = j) 1
5 + 6

25 + 4
125 = 59

125 0 + 9
25 + 12

125 = 57
125 0 + 0 + 9

125 = 9
125
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Exemple 1.2.5. Dans l’exemple 1.1.6, les lois marginales sont données par la formule des probabilités
totales. On obtient :

� Pour i > 1 :

P (X = i) =
+∞∑
j=2

P
(
[X = i] ∩ [Y = j]

)
=

+∞∑
j=i+1

p2qj−2

=︸︷︷︸
k=j−i−1

p2
+∞∑
k=0

qk+i−1

= p2qi−1
+∞∑
k=0

qk

=
p2qi−1

1− q
= pqi−1.

Ce n’est pas une surprise, car X suit la loi géométrique de paramètre p (rang du premier succès
dans une répétition d’une infinité d’épreuves de Bernoulli identiques et indépendantes, et dont
le succès ”obtenir Pile” a pour probabilité p.)

� Pour j > 2 :

P (Y = j) =
+∞∑
i=1

P
(
[X = i] ∩ [Y = j]

)
=

j−1∑
i=1

p2qj−2 = (j − 1)p2qj−2.

Soit X une variable aléatoire telle que pour tout i ∈ N∗, P (X = i) =
i

2i+1
. On dispose de X

boules numérotées de 1 à X dans une urne. On effectue un tirage, et on note Y le numéro de la
boule tirée.

1. Vérifier que la loi deX est bien une loi de probabilité. Calculer E(X). On donne V (X) = 2.

2. Donner la loi conjointe de X et de Y .

3. Déterminer la loi de Y puis son espérance.

Exercice type concours.

1.3. Lois conditionnelles.

Soit X et Y deux variables aléatoires définies sur le même espace probabilisé (Ω,A, P ).

� Soit yj ∈ Y (Ω) fixé. La loi conditionnelle de X sachant [Y = yj ] est définie par :

P[Y =yj ](X = xi) =
P
(
[X = xi] ∩ [Y = yj ]

)
P (Y = yj)

.

� Soit xi ∈ X(Ω) fixé. La loi conditionnelle de Y sachant [X = xi] est définie par :

P[X=xi](Y = yj) =
P
(
[X = xi] ∩ [Y = yj ]

)
P (X = xi)

.

Définition : Lois conditionnelles
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On vérifie que les lois conditionnelles sont bien des lois de probabilités (cela tient au fait que les
probabilités conditionnelles sont bien des probabilités).

Dans les exercices on pourra utiliser cette relation pour trouver la loi conjointe si on a un moyen
simple de connâıtre la loi conditionnelle.

Exemple 1.3.1. Dans l’exemple 1.1.4, la loi conditionnelle de X sachant [Y = 1] est donnée par le
tableau :

i 0 1 2 3

P[Y =1](X = i)
2
35
20
35

= 1
10

12
35
20
35

= 3
5

6
35
20
35

= 3
10 0

Exemple 1.3.2. Dans l’exemple 1.1.5, la loi conditionnelle de Y sachant [X = i] est une binomiale
de paramètres i et 3

5 . En effet, si [X = i], alors on lance i fois la même pièce de monnaie dont la

probabilité de tomber sur pile vaut 3
5 , et Y désigne le nombre de piles obtenus.

En revanche, la loi de Y n’est pas binomiale.

À un péage, on a en moyenne 20 voitures par heure, et 15 guichets. Le nombre N de voitures
passant pendant une heure suit une loi de Poisson. On suppose que les voitures choisissent au
hasard un guichet, et ce indépendamment les unes des autres. On note X le nombre de voitures
se présentant au péage n°1.

1. Donner le paramètre de la loi de Poisson.

2. Quelle est la loi conditionnelle de X sachant [N = n] ?

3. Déterminer la loi conjointe du couple (N,X).

4. En déduire la loi marginale de X.

Exercice type concours.

Exercice 1.3.3. On tire simultanément deux jetons d’une urne contenant quatre jetons numérotées de
1 à 4. Soit X le plus petit et Y le plus grand des numéros obtenus.

1. Déterminer la loi conjointe et les lois marginales de X et Y .

2. X et Y sont-elles indépendantes ?

3. a. Déterminer la loi conditionnelle de Y lorsque le plus petit numéro tiré vaut 3.

b. Déterminer l’espérance et l’écart-type de Y lorsque le plus petit numéro tiré vaut 3.

4. Déterminer la loi conditionnelle de X lorsque le plus grand numéro tiré est pair.

5. Calculer Cov(X,Y ).

1.4. Théorème du transfert.

Soit X et Y deux variables aléatoires réelles discrètes et g une fonction numérique de deux
variables définie sur X(Ω)×Y (Ω). Alors, sous réserve de convergence absolue (dans le cas infini),
la variable aléatoire Z = g(X,Y ) admet une espérance qui vaut :

E(Z) =
∑

xi∈X(Ω)
yj∈Y (Ω)

g(xi, yj)P
(
[X = xi] ∩ [Y = yj ]

)
.

En particulier (et sous réserve de convergence absolue), on a :

E(XY ) =
∑

xi∈X(Ω)
yj∈Y (Ω)

xiyjP
(
[X = xi] ∩ [Y = yj ]

)
.

Théorème : Théorème du transfert



CHAPITRE IX 9

Exercice 1.4.1. Dans l’exemple 1.1.4, calculer E(X2Y 3).

1.5. Covariance de deux variables aléatoires.

Soit X et Y deux variables aléatoires discrètes définies sur le même espace probabilisé (Ω,A, P )
et admettant un moment d’ordre 2. Alors :

1. la variable aléatoire produit XY admet une espérance,

2. la variable aléatoire somme X + Y admet un moment d’ordre 2.

Proposition : Existence de E(XY ) et de E
(
(X + Y )2

)

Démonstration. À compléter. �

Remarque 1.5.1. L’espérance E(XY ) peut alors être calculée grâce au théorème du transfert.

Soit X et Y deux variables aléatoires discrètes définies sur le même espace probabilisé (Ω,A, P )
et admettant une espérance. La covariance de X et Y est égale, sous réserve d’existence, à
l’espérance de la variable aléatoire

(
X − E(X)

)(
Y − E(Y )

)
:

Cov(X,Y ) = E
((
X − E(X)

)(
Y − E(Y )

))
.

Définition : Covariance

Remarque 1.5.2 (Sens de la covariance). Si X et Y ont tendance à être en même temps au dessus
de leur moyenne, (ou en dessous), le nombre

(
X − E(X)

)(
Y − E(Y )

)
est positif, et cela donne une

covariance positive. En revanche si
(
X − E(X)

)
et
(
Y − E(Y )

)
sont souvent de signes opposés, cela

donnera plutôt une covariance négative. Une covariance positive signifie que les variables ont tendance
à évoluer ”dans le même sens”, une covariance négative, qu’elles ont tendance à varier en sens opposés.

Soit X et Y deux variables aléatoires discrètes définies sur le même espace probabilisé (Ω,A, P )
et admettant un moment d’ordre 2. Alors :

Cov(X,Y ) = E(XY )− E(X)E(Y ).

Théorème : Formule de Kœnig-Huygens

Démonstration. À compléter. �

Exercice 1.5.3. On reprend la situation de l’exemple 1.1.3 : on lance deux dés équilibrés à 4 faces, X
est le maximum des deux résultats et Y le minimum.

Estimation de la covariance de X et Y grâce à la simulation :

1 (...)

2

3 T=np.zeros ((4,4))

4 for i in range (4):

5 for j in range (4):

6 T[i,j]=i*j

7

8 EspXY=np.sum(Loi*T) # * est le produit terme a terme.

9 EspX=np.sum(np.array(LoiX)*np.array ([1,2,3,4]))

10 EspY=np.sum(np.array(LoiY)*np.array ([1,2,3,4]))

11

12 Cov = EspXY -EspY*EspX

13

14 print(Cov)

Montrer que Cov(X,Y ) = 25
64

(
25
64 ≈ 0, 39

)
.

Exercice 1.5.4. Calculer Cov(X,Y ) dans l’exemple 1.1.4.
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Exercice 1.5.5. Calculer Cov(X,Y ) dans l’exemple 1.1.6.

Soit X, Y et Z des variables aléatoires définies sur le même espace probabilisé (Ω,A, P ) admet-
tant un moment d’ordre 2 et λ un nombre réel. On a :

1. Si Y suit la loi certaine : Cov(X,Y ) = 0.

2. Si X et Y sont égales : Cov(X,X) = V (X).

3. Symétrie de la covariance : Cov(Y,X) = Cov(X,Y ),

4. Bilinéarité de la covariance :

Cov(λX, Y ) = λCov(X,Y ) et Cov(X + Z, Y ) = Cov(X,Y ) + Cov(Z, Y ),

(linéarité à gauche)

Cov(X,λY ) = λCov(X,Y ) et Cov(X,Y + Z) = Cov(X,Y ) + Cov(X,Z),

(linéarité à droite).

Proposition : Propriétés de la covariance

Démonstration. À compléter.

�

Exercice 1.5.6. Exprimer en fonction de Cov(X,Y ), V (X) et V (Y ) le nombre Cov(2X + 3Y, Y −X).

Soit X et Y deux variables aléatoires discrètes définies sur le même espace probabilisé (Ω,A, P )
et admettant un moment d’ordre 2. Alors la variable aléatoire X + Y admet une variance, qui
vaut :

V (X + Y ) = V (X) + V (Y ) + 2Cov(X,Y ).

Proposition : Variance de la somme de deux variables aléatoires discrètes

Démonstration. X et Y admettent un moment d’ordre 2, donc X + Y également d’après la proposition
1.5. Il vient ensuite, en utilisant la linéarité de l’espérance :

V (X + Y ) = E
(
(X + Y )2)− (

E(X + Y )
)2

= E
(
X2 + Y 2 + 2XY

)
−

(
E(X) + E(Y )

)2

= E
(
X2) + E

(
Y 2) + 2E(XY ) −

(
E(X)

)2 −
(
E(Y )

)2 − 2E(X)E(Y ) = V (X) + V (Y ) + 2Cov(X,Y ).

�

Soit X et Y deux variables aléatoires discrètes définies sur le même espace probabilisé (Ω,A, P )
et admettant un moment d’ordre 2. Alors :

Cov(X,Y ) =
1

2

(
V (X + Y )− V (X)− V (Y )

)
Cov(X,Y ) =

1

2

(
V (X) + V (Y )− V (X − Y )

)

Corollaire : Covariance de X, Y en fonction des variances de X, Y et X ± Y

Démonstration. À compléter.

�

Soit X et Y deux variables aléatoires suivant une loi de Poisson de paramètres respectifs λ et µ.
Soit U = X + Y et V = X − Y .

1. Donner la valeur de la covariance de U et V .

2. Pour quelle valeur des paramètres λ et µ cette covariance est-elle nulle ? Que peut-on en
déduire sur l’indépendance de U et V ?

Exercice type concours.
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1.6. Coefficient de corrélation linéaire.

Soit X et Y deux variables aléatoires définies sur le même espace probabilisé et admettant une
variance non nulle. Le nombre réel :

ρ(X,Y ) =
Cov(X,Y )

σ(X)σ(Y )

est appelé coefficient de corrélation linéaire de X et Y .

Définition : Coefficient de corrélation linéaire

Exemple 1.6.1. Dans l’exemple 1.1.3 (on lance deux dés équilibrés à 4 faces, X est le maximum des
deux résultats et Y le minimum), estimation du coefficient de corrélation linéaire :

1 (...)

2

3 m2X=sum(np.array(LoiX) * np.array ([1:4]) **2)

4 m2X=sum(np.array(LoiX) * np.array ([1:4]) **2)

5 varX=m2X -espX **2

6 varY=m2Y -espY **2

7 rho=cov/sqrt(varX*varY)

8

9 print(’Le coefficient de correlation lineaire empirique est : ’ rho)

Rappel des lois marginales :
i 1 2 3 4

P (X = i) 1
16

3
16

5
16

7
16

j 1 2 3 4

P (Y = j) 7
16

5
16

3
16

1
16

Les calculs donnent :

E(X) =
25

8
E(X2) =

85

8
et V (X) =

55

64
.

E(Y ) =
15

8
E(Y 2) =

35

8
et V (Y ) =

55

64

ρ =
5

11
≈ 0.45

Exercice 1.6.2. Calculer ρ(X,Y ) dans l’exemple 1.1.4.

Soit X et Y deux variables aléatoires définies sur le même espace probabilisé et admettant une
variance non nulle. Alors :

−1 6 ρ(X,Y ) 6 1,

avec égalité en −1 ou en 1 si, et seulement s’il existe deux réels a et b tels que Y = aX + b,
presque sûrement.

Théorème : Bornes sur le coefficient de corrélation linéaire.

Démonstration. À compléter.

�

Exercice 1.6.3. Que valent ρ(X,X), ρ(X, 2X) et ρ(X,−X) ?

On dit que deux variables aléatoires X et Y sont non corrélées lorsque Cov(X,Y ) = 0 (ou
ρ(X,Y ) = 0).

Définition : Variables aléatoires non correlées



CHAPITRE IX 12

Exercice 1.6.4. n personnes se répartissent au hasard dans trois pièces A, B et C d’un appartement
(n ∈ N∗). Chaque pièce peut contenir un nombre quelconque de personnes.

On désigne par X, Y et Z les variables aléatoires prenant pour valeurs respectives le nombre de
personnes dans les pièces A, B et C.

1. Déterminer les lois de X, Y , Z, X + Y .

2. Donner le coefficient de corrélation linéaire du couple (X,Y ).

Le nombre X de candidats à un examen suit une loi de Poisson. Ils sont en moyenne M à passer
cet examen. Chaque candidat a une probabilité p non nulle de réussir l’examen, et on suppose
que les réussites des différents candidats sont indépendantes. On note Y le nombre de reçus, et
Z le nombre de recalés.

1. Déterminer la loi du couple (X,Y ).

2. En déduire la loi de Y , puis la loi de Z.

3. Écrire E(XY ) sous la forme d’une somme que l’on transformera mais qu’on ne calculera
pas.

4. Montrer que Y et Z sont indépendantes.

5. Déduire V (X + Y ), Cov(X,Y ), ρ(X,Y ) puis E(XY ).

Exercice type concours.

Exercice 1.6.5. On considère deux variables aléatoires indépendantesX et Y suivant des lois binomiales
de paramètres respectifs (1; 1

2) et (2, 1
2).

1. Donner la loi du couple (X,Y ) dans un tableau.

2. On note Z =
√
X2 + Y 2 . Calculer l’espérance et la variance de Z à l’aide de la loi du couple

(X,Y ).

3. Donner la loi du couple (X,Z) puis la loi de Z.

4. Calculer le coefficient de corrélation linéaire de (X,Z). X et Z sont-elles indépendantes ?

2. Indépendance des variables aléatoires discrètes

2.1. Indépendance de deux variables aléatoires discrètes.

Soit X et Y deux variables aléatoires définies sur le même espace probabilisé (Ω,A, P ). On dit
que X et Y sont indépendantes lorsque, pour tout xi ∈ X(Ω) et yj ∈ Y (Ω), on a :

P
(
[X = xi] ∩ [Y = yj ]

)
= P (X = xi)× P (Y = yj).

Définition : Variables aléatoires indépendantes

Remarque 2.1.1. � Deux variables aléatoires X et Y sont donc indépendantes si les événements
[X = xi] et [Y = yj ] sont indépendants, pour toutes valeurs de xi et yj prises par X et Y
respectivement.

� Si deux variables aléatoires sont issues d’expériences n’influant pas l’une sur l’autre, alors elles
sont indépendantes.

Soit X et Y deux variables aléatoires discrètes indépendantes définies sur le même espace
probabilisé (Ω,A, P ).

1. Si f et g sont deux fonctions définies respectivement sur X(Ω) et Y (Ω), alors f(X) et
g(Y ) sont encore indépendantes.

Proposition : Variables aléatoires indépendantes
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2. P
(
[X ∈ A]∩ [Y ∈ B]

)
= P (X ∈ A)P (Y ∈ B) pour toute partie A ⊂ X(Ω) et toute partie

B ⊂ Y (Ω).

Exemple 2.1.2. Si X et Y sont indépendantes, alors X2 et Y , X2 et Y 2, · · · sont aussi indépendantes.

Dans le cas où X et Y sont des variables aléatoires indépendantes, on peut obtenir la loi conjointe
du couple (X,Y ) à partir des deux lois de X et Y en multipliant les probabilités.

Réciproquement, on peut voir dans le tableau ou avec la loi conjointe et les lois de X et Y si
les variables aléatoires sont indépendantes. Il suffit de vérifier la condition pour chaque xi, yj .

Méthode : Loi conjointe de deux variables aléatoires discrètes indépendantes

Exemple 2.1.3. Il y a indépendance si l’on répète la même expérience sans changer les conditions. Par
exemple, pour le lancer d’un même dé équilibré deux fois de suite, si X est le numéro du premier
lancer et Y le numéro du second, alors X et Y sont indépendantes. En effet :

P
(
[X = i] ∩ [Y = j]

)
=

1

36
=

1

6
× 1

6
= P (X = i)P (Y = j)

pour tout couple (i, j) ∈ {1, 2, 3, 4, 5, 6}2.

Exemple 2.1.4. Dans l’exemple 1.1.4, X et Y ne sont pas indépendantes. En effet, d’après le tableau
de la loi conjointe obtenu, on a :

P
(
[X = 0] ∩ [Y = 0]

)
= 0 6= 4

35
× 10

35
= P (X = 0)P (Y = 0).

Soit X et Y deux variables aléatoires discrètes définies sur le même espace probabilisé. Si X et
Y sont indépendantes, alors :

1. E(XY ) = E(X)E(Y ),

2. Cov(X,Y ) = 0,

3. ρ(X,Y ) = 0,

4. V (X + Y ) = V (X) + V (Y ).

Théorème : Covariance de deux variables aléatoires indépendantes

Démonstration. À compléter. �

Remarque 2.1.5. Attention : la réciproque est fausse. Si Cov(X,Y ) = 0, X et Y ne sont pas
forcément indépendantes. Par exemple, si X ↪→ U({−1, 0, 1}) et Y = 1 − |X|, alors X et Y
ne sont pas indépendantes, car :

P
(
[X = 1] ∩ [Y = 1]

)
= P

(
[X = 1] ∩ [X = 0]

)
= 0,

et :

P (X = 1)× P (Y = 1) = P (X = 1)× P (X = 0) =
1

3
× 1

3
=

1

9
6= 0.

Mais XY = X
(
1−|X|

)
= 0 donc E(XY ) = 0, et E(X) = 0 donc Cov(X,Y ) = E(XY )−E(X)E(Y ) =

0.
On pourra en revanche utiliser la contraposée : si Cov(X,Y ) 6= 0, alors X et Y ne sont pas

indépendantes.

Pour montrer que X et Y sont indépendantes :

� On peut le voir directement avec l’expérience aléatoire et la définition de X et Y ;

� On montre que pour tout xi ∈ X(Ω) et pour tout yj ∈ Y (Ω), les réels P
(
[X = xi]∩[Y =

yj ]
)

et P (X = xi)P (Y = yj) sont égaux.

Méthode : Comment montrer que X et Y sont ou ne sont pas indépendantes
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Pour montrer que X et Y ne sont pas indépendantes :

� On trouve une valeur xi ∈ X(Ω) et une valeur yj ∈ Y (Ω) telles que les réels P
(
[X =

xi] ∩ [Y = yj ]
)

et P (X = xi)P (Y = yj) ne sont pas égaux (penser aux zéros dans la loi
conjointe) ;

� On montre que E(XY ) 6= E(X)E(Y ) ;

� On montre que Cov(X,Y ) 6= 0 ;

� On montre que V (X + Y ) 6= V (X) + V (Y ).

2.2. Indépendance d’une famille ou d’une suite de variables aléatoires discrètes.

On dit que les variables aléatoires discrètesX1, X2, . . . , Xn définies sur le même espace probabilité
(Ω,A, P ) sont (mutuellement) indépendantes si, et seulement si, pour toute liste de valeurs
(x1, x2, . . . , xn) prises par (X1, X2, . . . , Xn), on a :

P
(
[X1 = x1] ∩ [X2 = x2] ∩ . . . ∩ [Xn = xn]

)
= P (X1 = x1)P (X2 = x2) . . . P (Xn = xn).

Définition : Famille finie de variables aléatoires (mutuellement) indépendantes

Soit (Xn)n∈N une suite de variables aléatoires discrètes définies sur le même espace probabilisé
(Ω,A, P ). On dit que les variables aléatoires Xn sont indépendantes si, et seulement si toute
sous-famille finie est constituée de variables aléatoires indépendantes, au sens de la définition
précédente.

Définition : Suite de variables aléatoires indépendantes

Remarque 2.2.1. Si une suite (Xn)n∈N ou une famille (X1, X2, . . . , Xn) sont constituées de variables
aléatoires discrètes indépendantes, alors, en particulier, Xi et Xj sont indépendantes pour tout i 6= j.

Attention, la réciproque est fausse ! Ce n’est pas parce que les variables sont deux à deux indépendantes
qu’elles sont mutuellement indépendantes.

Soit X1, X2, . . . , Xn des variables aléatoires discrètes indépendantes définies sur le même espace
probabilisé et admettant un moment d’ordre 2. On a alors :

V (X1 +X2 + . . .+Xn) = V (X1) + V (X2) + . . .+ V (Xn).

Proposition : Variance d’une somme de n variables aléatoires indépendantes

Soit
X1, X2, . . . Xp, Xp+1, . . . , Xn

des variables aléatoires discrètes et indépendantes définies sur le même espace probabilisé
(Ω,A, P ). Alors, pour toute fonction f et toute fonction g bien définies, les variables aléatoires
f(X1, X2, . . . , Xp) et g(Xp+1, . . . , Xn) sont indépendantes.

Théorème : Lemme des coalitions

Exemple 2.2.2. Soit X,Y, Z, T quatre variables aléatoires indépendantes. Alors XY et Z sont aussi
indépendantes, ZeY et X − T 2 sont indépendantes, X, Y − Z et T 3 sont indépendantes.

2.3. Calculs de probabilités à l’aide de la loi conjointe.
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Utiliser la formules des probabilités totales pour utiliser la loi conjointe et l’indépendance, le cas
échéant. Par exemple :

P (X = Y ) =
∑

xi∈X(Ω)

P
(
[X = xi] ∩ [X = Y ]

)
avec ensemble complet d’événements

(
[X = xi]

)
xi∈X(Ω)

=
∑

xi∈X(Ω)

P
(
[X = xi] ∩ [Y = xi]

)
=

∑
xi∈X(Ω)

P (X = xi)× P (Y = xi) si X et Y indépendantes

P (X = Y ) =
∑

yj∈Y (Ω)

P
(
[Y = yj ] ∩ [X = Y ]

)
avec ensemble complet d’événements

(
[Y = yj ]

)
yj∈Y (Ω)

=
∑

yj∈Y (Ω)

P
(
[Y = yj ] ∩ [X = yj ]

)
=

∑
yj∈Y (Ω)

P (Y = yj)× P (X = yj) si X et Y indépendantes

P (X 6 Y ) =
∑

xi∈X(Ω)

P
(
[X = xi] ∩ [X 6 Y ]

)
avec ensemble complet d’événements

(
[X = xi]

)
xi∈X(Ω)

=
∑

xi∈X(Ω)

P
(
[X = xi] ∩ [Y > xi]

)
=

∑
xi∈X(Ω)

P (X = xi)× P (Y > xi) si X et Y indépendantes

P (X 6 Y ) =
∑

yj∈Y (Ω)

P
(
[Y = yj ] ∩ [X 6 Y ]

)
avec ensemble complet d’événements

(
[Y = yj ]

)
yj∈Y (Ω)

=
∑

yj∈Y (Ω)

P
(
[Y = yj ] ∩ [X 6 yj ]

)
=

∑
yj∈Y (Ω)

P (Y = yj)× P (X 6 yj) si X et Y indépendantes

Méthode : Autres calculs : P (X = Y ), P (X 6 Y ). . .

Exercice 2.3.1. Soit X et Y deux variables indépendantes de loi géométrique de paramètre p ∈]0; 1[.
Calculer P (X = Y ) et P (X 6 Y ).

Une boite contient 3 boules blanches et 2 boules noires. On y effectue indéfiniment des tirages
avec remise de 2 boules prises simultanément. On définit les évènements :

� An : ”on obtient deux boules de couleurs différentes au ne tirage”,

� Bn : ”on obtient deux boules blanches au ne tirage”.

1. Calculer P (An) et P (Bn).

2. On note X le numéro du tirage au cours duquel on obtient pour la première fois deux
boules de couleurs différentes, et Y le numéro du tirage au cours duquel on obtient pour
la première fois deux boules blanches.

a. Déterminer les lois de X, Y et leurs espérances.

b. Déterminer la loi du couple (X,Y ).

Exercice type concours.
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c. En déduire P (X < Y ).

3. Opérations sur les variables aléatoires indépendantes

3.1. Somme de deux variables aléatoires indépendantes.

Si X et Y sont deux variables aléatoires indépendantes, notons S = X + Y eur somme, avec
S(Ω) = {sk}. Alors :

P (S = sk) =
∑

xi∈X(Ω)

P
(
[X = xi] ∩ [S = sk]

)
avec ensemble complet d’événements

(
[X = xi]

)
xi∈X(Ω)

=
∑

xi∈X(Ω)

P
(
[X = xi] ∩ [X + Y = sk]

)
=

∑
xi∈X(Ω)

P
(
[X = xi] ∩ [Y = sk − xi]

)
=

∑
xi∈X(Ω)

P (X = xi)× P (Y = sk − xi) si X et Y indépendantes

La somme porte en réalité sur les termes xi ∈ X(Ω) tels que sk − xi ∈ Y (Ω)

P (S = sk) =
∑

yj∈Y (Ω)

P
(
[Y = yj ] ∩ [S = sk]

)
avec ensemble complet d’événements

(
[Y = yj ]

)
yj∈Y (Ω)

=
∑

yj∈Y (Ω)

P
(
[Y = yj ] ∩ [X + Y = sk]

)
=

∑
yj∈Y (Ω)

P
(
[Y = yj ] ∩ [X = sk − yj ]

)
=

∑
yj∈Y (Ω)

P (Y = yj)× P (X = sk − yj) si X et Y indépendantes

La somme porte en réalité sur les termes yj ∈ X(Ω) tels que sk − yj ∈ X(Ω)
Dans le cas où les variables sont à valeurs entières, on peut aussi dénombrer toutes les possi-

bilités de valeurs pour X et Y pour avoir X + Y = k :

P (S = k) =
∑

i+j=k

P
(
[X = i] ∩ [Y = j]

)
=
∑
i

P
(
[X = i] ∩ [Y = k − i]

)
=
∑
i

P (X = i)× P (Y = k − i) si X et Y indépendantes

P (S = k) =
∑

i+j=k

P
(
[X = i] ∩ [Y = j]

)
=
∑
j

P
(
[X = k − j] ∩ [Y = j]

)
=
∑
j

P (X = k − j)× P (Y = j) si X et Y indépendantes

La notation
∑

i+j=k

signifie que la somme porte sur tous les couples d’entiers positifs ou nuls

(i, j) tels que i+ j = k.

Méthode : Loi de probabilité de la somme de deux variables aléatoires discrètes

Exemple 3.1.1. On lance deux dés réguliers à 4 faces et on note S la somme des résultats obtenus.
Donner la loi de S.

Simulation informatique :
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1 import numpy.random as rd

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 def somme():

6 z = rd.randint(1, 5, 2) # contient le lancer de deux des

7 x = z[0]

8 y = z[1]

9 return x+y

10

11

12 # estimation de la loi de S

13

14 N = 1000

15

16 T = [0]*N

17 for k in range (N):

18 T[k]= somme()

19

20 plt.hist(T, rwidth =0.2, density = True , range =(2 ,8), bins =7)

21 plt.show()

1 2. 0.064

2 3. 0.123

3 4. 0.188

4 5. 0.245

5 6. 0.188

6 7. 0.124

7 8. 0.068

Loi de S

Soit X et Y deux variables aléatoires discrètes et S = X + Y leur somme. Pour calculer E(S),
on peut :

� Utiliser la linéarité : E(X + Y ) = E(X) + E(Y ).

� Utiliser la loi de S et la définition de l’espérance : E(S) =
∑

sk∈S(Ω)

skP (S = sk).

� Utiliser la loi conjointe et le théorème du transfert : E(X + Y ) =
∑
xi,yj

(xi + yj)P
(
[X =

xi] ∩ [Y = yj ]
)
.

Méthode : Espérance de la somme de deux variables aléatoires discrètes
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Lemme 3.1.2. Formule de Vandermonde Soit m,n et k trois entiers naturels. Alors∑
i+j=k

(
n

i

)(
m

j

)
=

(
n+m

k

)
avec la convention

(
q
p

)
= 0 si p < 0 ou p > q.

On peut aussi écrire :

n∑
i=0

(
n

i

)(
m

k − i

)
=

(
n+m

k

) m∑
j=0

(
n

k − j

)(
m

j

)
=

(
n+m

k

)
Démonstration. À compléter. �

Soit X et Y deux variables aléatoires indépendantes définies sur le même espace probabilisé
(Ω,A, P ), suivant des lois binomiales de paramètres respectifs (m, p) et (n, p). Alors la somme
X + Y suit la loi binomiale de paramètres (m+ n, p).

Théorème : Stabilité de la loi binomiale pour la somme

Pour la preuve, il suffit de se souvenir que la loi binomiale est la loi de la somme de variables de
Bernouilli indépendantes. Voyons-en une autre par un calcul qui utilise la formule de Vandermonde :

Démonstration. À compléter. �

Remarque 3.1.3. En particulier, si m = n = 1 : la somme de deux variables aléatoires indépendantes
suivant la même loi de Bernoulli de paramètre p est une variable aléatoire suivant une loi binomiale
B(2, p). En généralisant (par récurrence) :

Soit n > 2, p ∈]0; 1[ et X1, X2, . . . , Xn des variables aléatoires indépendantes définies sur le
même espace probabilisé (Ω,A, P ) et suivant la même loi de Bernoulli de paramètre p. Alors
Sn = X1 + X2 + . . . + Xn est une variable aléatoire de loi binomiale de paramètres n et p :
Sn ↪→ B(n, p).

En particulier, et grâce à l’indépendance, on retrouve :

V (Sn) =
n∑

i=1

V (Xi) = np(1− p).

Ainsi : la somme de n variables aléatoires de Bernoulli indépendantes et de même espérance
p suit la loi binomiale B(n, p).

Corollaire : Somme de n variables aléatoires indépendantes de même loi de Bernoulli

La preuve est bien sûr une preuve par récurrence basée sur le résultat précédent.

Soit X et Y deux variables aléatoires indépendantes définies sur le même espace probabilisé
(Ω,A, P ), suivant des lois de Poisson de paramètres respectifs λ et µ. Alors la somme X + Y
suit une loi de Poisson de paramètre λ+ µ.

Théorème : Stabilité de la loi de Poisson pour la somme

Ce résultat n’est pas très surprenant si on pense aux modèles qui utilisent la loi de Poisson, comme
la loi d’un temps d’attente. Imaginons le cas d’un client qui attend son tour à un guichet et que son
temps d’attente est modélisée par une loi de Poisson. Si le client doit attendre successivement à deux
guichets, chacun des temps d’attente étant modélisé par une loi de Poisson de paramètre λ puis µ,
alors son temps d’attente total (modélisé par la somme des deux lois de Poisson) suit une loi de Poisson
de paramètre λ+ µ. Vérifions maintenant cette intuition par le calcul.

Démonstration. À compléter.

�
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3.2. Maximum ou minimum de deux variables aléatoires indépendantes.

Soit X et Y deux variables aléatoires réelles discrètes définies sur le même espace probabilisé
(Ω,A, P ). On note Z = max(X,Y ) (resp. T = min(X,Y )) le maximum (resp. minimum) des
deux variables aléatoires X et Y :

� Z = max(X,Y ) est définie comme suit : Z =

{
X si X > Y

Y sinon

� T = min(X,Y ) est définie comme suit : T =

{
X si X 6 Y

Y sinon

max(X,Y ) et min(X,Y ) sont deux variables aléatoires définies sur l’espace probabilisé (Ω,A, P )

Définition : Maximum ou minimum de deux variables aléatoires

S’il n’est pas facile d’expliciter directement la loi des variables minimum et maximum, il est en
revanche plus facile de trouver les fonctions de répartition car il existe une formule générale.

Soit X et Y deux variables aléatoires réelles discrètes indépendantes définies sur le même
espace probabilisé (Ω,A, P ). Soit Z = max(X,Y ) et T = min(X,Y ). Alors, pour tout x ∈ R, on
a :

FZ(x) = FX(x)× FY (x) et 1− FT (x) =
(
1− FX(x)

)
×
(
1− FY (x)

)
.

Proposition : Fonction de répartition du maximum ou minimum de deux variables
indépendantes

Démonstration. À compléter. �

On cherche la fonction de répartition de Z = max(X,Y ) ou T = min(X,Y ), puis on calcule
la loi de probabilité de Z et de T en appliquant la méthode permettant de retrouver la loi à
partir de la fonction de répartition. Par exemple, si X et Y sont à valeurs entières : P (Z = k) =
FZ(k)− FZ(k − 1) pour tout k ∈ Z(Ω).

Méthode : Loi du maximum ou du minimum de deux variables indépendantes

Exemple 3.2.1. Donner la loi du maximum de deux variables aléatoires indépendantes de loi U({1, 2, 3, 4}).
3.3. Produit de deux variables aléatoires indépendantes.

Si X et Y sont deux variables aléatoires réelles définies sur le même espace probabilisé (Ω,A, P ),
la loi de leur produit Z = XY est donnée par :

P (XY = zk) =
∑

xi×yj=zk

P
(
[X = xi] ∩ [Y = yj ]

)
Si, de plus, X et Y sont à valeurs entières strictement positives et indépendantes, on a :

P (XY = k) =
∑

i×j=k

P (X = i)P (Y = j)

=
∑
i

P (X = i)P

(
Y =

k

i

)
=

∑
j

P

(
X =

k

j

)
P (Y = j).

(la somme portant sur les valeurs de i et j pour lesquelles P (X = i) et P (Y = j) sont toutes
deux non nulles et telles que i× j = k).

Méthode : Loi de probabilité du produit de deux variables aléatoires
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On peut également appliquer la formule des probabilités totales comme dans le cas de S =
X + Y .

Exemple 3.3.1. On lance deux dés réguliers à 4 faces et on note M le produit des résultats obtenus.
Donner la loi de M .

Simulation informatique :

1 import numpy.random as rd

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 def produit ():

6 z = rd.randint(1, 5, 2) # contient le lancer de deux des

7 x = z[0]

8 y = z[1]

9 return x*y

10

11

12 # estimation de la loi de S

13

14 N = 1000

15

16 T = [0]*N

17 for k in range (N):

18 T[k]= produit ()

19

20 plt.hist(T, rwidth =0.2, density = True , range =(1 ,17), bins=16, align

=’left’)

21 plt.show()

1 1. 0.063

2 2. 0.124

3 3. 0.137

4 4. 0.203

5 6. 0.118

6 8. 0.131

7 9. 0.043

8 12. 0.117

9 16. 0.064

Loi de M
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Soit X et Y deux variables aléatoires discrètes et Z = XY leur produit. Pour calculer E(Z), on
peut :

� Calculer E(X) × E(Y ) si X et Y sont indépendantes, car E(XY ) = E(X)E(Y ) (i.e.
Cov(X,Y ) = 0).

� Utiliser la loi de Z et la définition de l’espérance : E(Z) =
∑

zk∈Z(Ω)

zkP (Z = zk).

� Utiliser la loi conjointe et le théorème du transfert : E(XY ) =
∑
xi,yj

xiyjP
(
[X = xi]∩ [Y =

yj ]
)
.

Méthode : Espérance du produit de deux variables aléatoires discrètes

Exercice 3.3.2. Avec les notations de l’exemple 3.3.1, calculer E(XY ) de trois façons différentes.

ECRICOME 2022 Exercice 3
Partie I
On dispose de trois urnes U1, U2 et U3 et d’une infinité de jetons numérotés 1,2,3,...
On répartit un par un les jetons dans les urnes : pour chaque jeton, on choisit au hasard et avec

équiprobabilité une des trois urnes dans laquelle on place le jeton. Le placement de chaque jeton
est indépendant de tous les autres jetons, et la capacité des urnes en jetons n’est pas limitée.

Pour tout entier naturel n, non nul, on note Xn (respectivement Yn, Zn) le nombre de jetons
présents dans l’urne 1 (respectivement l’urne 2, l’urne 3) après avoir réparti les n premiers jetons.

Pour tout entier naturel non nul, on note Vn l’événement : ”Après la répartition des n premiers
jetons, au moins une urne reste vide”.

1. Soit n ∈ N∗.
a. Justifier que Xn, Yn et Zn suivent la même loi binomiale dont on précisera les pa-

ramètres.

b. Expliciter P (Xn = 0) et P (Xn = n).

c. Justifier que (Yn = 0) ∩ (Zn = 0) = (Xn = n).

d. Exprimer l’événement Vn à l’aide des événements (Xn = 0), (Yn = 0) et (Zn = 0).

e. En déduire que

P(Vn) = 3

(
2

3

)n

− 3

(
1

3

)n

.

2. On note V l’événement ”Au moins l’une des trois urnes reste toujours vide”.

Exprimer l’événement V à l’aide des événements Vn, puis démontrer que P(V ) = 0.

3. Soit T la variable aléatoire égale au nombre de jetons nécessaires pour que, pour la
première fois, chaque urne contienne au moins un jeton.

a. Compléter le programme Python suivant pour qu’il simule le placement des jetons
jusqu’au moment où chaque urne contient au moins un jeton, et pour qu’il renvoie la
valeur prise par la variable aléatoire T .

Exercice type concours.
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1 import numpy.random as rd

2

3 def T():

4 X=0

5 Y=0

6 Z=0

7 n=0

8 L=[X,Y,Z]

9 while ......... :

10 i = rd.randint (0,3) # choix d’un nombre entier entre 0 et 2

11 L[i] = ......

12 n = n+1

13 return .......

b. Écrire un programme Python qui simule 10 000 fois la variable aléatoire T et qui
renvoie une valeur approchée de son espérance (en supposant pour le moment que son
espérance existe).

4. Déterminer T (Ω).

5. Démontrer que pour tout n ∈ T (Ω),

P(T = n) = P(Vn−1)− P(Vn).

6. Démontrer que la variable aléatoire admet une espérance et calculer cette espérance.

Partie II
Pour tout entier naturel n non nul, on note Wn la variable aléatoire égale au nombre d’urne(s)

encore vide(s) après le placement des n premiers jetons.

7. a. Donner la loi du couple (X2,W2).

b. En déduire la loi de W2 et calculer son espérance.

c. Calculer la covariance de X2 et W2.

d. Les variables aléatoires X2 et W2 sont-elles indépendantes ?

Soit n un entier supérieur ou égal à 3.

8. Déterminer Wn(Ω).

9. Pour i ∈ J1, 3K, on note Wn,i la variable aléatoire égale à 1 si l’urne i est encore vide après
le placement des n premiers jetons, et qui vaut 0 sinon.

a. Montrer que pour tout i ∈ J1, 3K, E(Wn,i) =
(

2
3

)n
.

b. Exprimer la variable aléatoire Wn en fonction des variables aléatoires Wn,1, Wn,2 et
Wn,3,

c. Exprimer alors E(Wn) en fonction de n.

10. Démontrer que P ((Xn = n) ∩ (Wn = 2)) =
(

1
3

)n
.

Pour tout k ∈ J1, n− 1K, quelle est la valeur de P ((Xn = k) ∩ (Wn = 2)) ?

11. Démontrer que pour tout k ∈ J1, n− 1K,

P ((Xn = k) ∩ (Wn = 1)) =
2
(
n
k

)
3n

.

Que vaut P ((Xn = n) ∩ (Wn = 1)) ?

12. Démontrer que

E(XnWn) = 2nP ((Xn = n) ∩ (Wn = 2)) +

n−1∑
k=1

kP ((Xn = k) ∩ (Wn = 1)) .
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13. Montrer alors que E(XnWn) = n
(

2
3

)n
, puis calculer la covariance de Xn et Wn.

14. Interpréter le résultat obtenu à la question précédente.

4. Sujets d’annales en lien avec ce chapitre.

Tous les sujets sur listés dans le cours de révisions sur les variables discrètes contiennent aussi des
questions sur des couples de lois discrètes.
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