1L

11l
1o
1135
1.4.
1o
18

2

21
2.2
e

3

L1,
B2,
3.3.

4.

CHAPITRE IX

COUPLES ET SUITES DE VARIABLES ALEATOIRES DISCRETES

TABLE DES MATIERES

Couples de variables aléatoires discretes
Loi conjointe
Lois marginales
Lois conditionnelles
Théoreme du transfert
Covariance de deux variables aléatoires
Coefficient de corrélation linéaire
Indépendance des variables aléatoires discretes
Indépendance de deux variables aléatoires discretes
Indépendance d’une famille ou d’une suite de variables aléatoires discretes
Calculs de probabilités a ’aide de la loi conjointe
Opérations sur les variables aléatoires indépendantes
Somme de deux variables aléatoires indépendantes
Maximum ou minimum de deux variables aléatoires indépendantes
Produit de deux variables aléatoires indépendantes
Sujets d’annales en lien avec ce chapitre.

ECG 2 Maths appliquées, http://louismerlin.fr.

CO J &= DN N

e}

11

12
14
14
16
16
19
19
23


http://louismerlin.fr

CHAPITRE IX 2

1. COUPLES DE VARIABLES ALEATOIRES DISCRETES

1.1. Loi conjointe.

Soit X et Y deux variables aléatoires discretes définies sur un espace probabilisé (€2, .4, P). On
appelle loi conjointe la loi de probabilité du couple (X;Y'). C’est la donnée :

e des supports X (Q) = {z1,22,...,2;,...} et Y() = {y1,y2,...,¥;,...} (ensembles finis
ou infinis) ;

e des probabilités p;; = P([X = z;] N [Y = y;]) pour tout z; € X () et y; € Y(Q).

La loi d’'un couple de variables est donc indexée par des couples d’indices. Remarquons tout de suite
qu’il n’y a aucune raison que les deux variables X et Y soient indépendantes et donc

pij = P(IX =z N[Y =y]) # P(X =i)- P(Y =)

en général.

Remarque 1.1.1. Si X et Y sont des variables aléatoires finies, de supports respectifs
X(Q) ={z1,22,...,2n} et Y(Q)={y1,92,---,Ym},

on peut présenter les résultats sous forme d’un tableau :

(X,Y) Y1 Yo " Ym
T P11 P12 ce Pim
Z2 D21 D22 co D2m
Tn DPnl Pn2 ce Pnm

Remarque 1.1.2. La loi conjointe du couple (X,Y’) est une loi de probabilité, on a donc p;; > 0 pour
tous 7 et j tels que z; € X(Q) et y; € Y(2), et :

2o X om)= 2 | X om| =t

2,€X(Q) \y; €Y (Q) y €Y (Q) \zeX(Q)

ces sommes étant des sommes finies ou des sommes de séries (nécessairement convergentes donc).

Méthode : Obtention de la loi conjointe
Pour donner la loi conjointe, il faut donc calculer les probabilités P([X = azg (I |p7 = yj]) pour
tout z; € X(Q) et y; € Y(2). Il y a plusieurs méthodes :

¢ Si on est dans une situation d’équiprobabilité et si X et Y sont finies, on peut procéder par
dénombrement, en comptant le nombre d’issues réalisées par 'événement [X = z;|N[Y =
y;] puis en divisant par le nombre total d’issues Card(€2).

e Sinon, on peut utiliser les probabilités conditionnelles :
P([X =2]N[Y = y;]) = P(X = 2;) Px=y) (Y = y;)
si on connait la loi de X, ou :
P([X = {BZ] N [Y = y]]) = P(Y = yj)P[Y:yj](X = 1‘Z)

si on connalt la loi de Y.
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Ezemple 1.1.3. On lance deux dés équilibrés a 4 faces. On note X le maximum des deux résultats et
Y le minimum. Donnons la loi du couple (X,Y).

(X,Y) 1 2 3 4

- : : : 1 = 0 0 0

On vérifie qu’on obtient le tableau ci-contre 5 H T 3 0
pour la loi conjointe de X et Y : 16 16 T
16 16 16

1 2 2 2 T

16 16 16 16

Simulation informatique :

numpy .random as rd
numpy as np

lancer ():
z = rd.randint (1, 5, 2)
x = (z)
y = (z)
[z, vy]

Loi np.zeros ((4,4))
i (n)
[x, y] = lancer()
Loi[x-1, y-1] = Loilx-1, y-1] + 1

Loi = Loi/N

(Loi)

0. ]
. 0. ]
.085 0. ]
.099 0.066]

]

On peut représenter ensuite les fréquences d’apparition des réalisations de la loi du couple en un
diagramme 3D (le programme qui permet de construire ce genre de diagramme n’est pas au programme,
il est disponible en annexe de ce cours sur ma page Web) :
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Fréquence

Ezemple 1.1.4. On dispose d’une urne avec 2 boules blanches, 2 boules noires et 3 boules rouges. On
tire simultanément 3 boules de cette urne. On note X le nombre de rouges tirées et Y le nombre de

noires. Donnons la loi du couple (X,Y).
On vérifie qu’on obtient le tableau suivant pour la loi conjointe de X et Y :

(X.Y) 0 1 2
2 2

0 0 Z Z

1 3 13 kS

365 365 35

2 % s 0

3 L 0 0

Ezemple 1.1.5. On dispose d'un sac contenant 6 jetons dont 2 sont rouges dans lequel on préleve
simultanément 3 jetons. Si on a obtenu k jetons rouges dans le tirage, on lance k fois une piece de
monnaie dont la probabilité de tomber sur pile vaut %

On note X le nombre de boules rouges contenues dans le tirage et Y le nombre de piles obtenu lors
des lancers. Cherchons la loi du couple (X,Y).

On vérifie qu’on obtient le tableau suivant pour la loi conjointe de X et Y :

(X;Y) 0 1 2
0 2 0 0
3 2 _ 6 3.3 _ 9
: 1 5.252_ ﬁ4 1 5.352_%12 1 32 9
2 s (3 =ms 525 5=5:] 5 (5) =15

Ezemple 1.1.6. On lance une piece une infinité de fois. On note p €]0;1[ (et ¢ = 1 — p) la probabilité
d’obtenir pile. Soit X le rang du premier pile et Y le rang du deuxieme pile. Donner la loi conjointe
de X et Y puis vérifier qu'on a bien une loi de probabilité.

1.2. Lois marginales. Si ’on connait la loi du couple (X,Y), on peut en déduire les lois de X et Y,

appelées lois marginales, par la formule des probabilités totales. C’est une situation tres classique :
parfois il apparait plus naturellement la loi du couple et il faut étre capable d’en déduire les lois

marginales.

Théoreme : Lois marginales
| Soit (X,Y) un couple de variables aléatoires réelles discretes. On a alors :
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e Pour tout z; € X(Q),
P(X=gz)= ) P(X=z]n[Y=y)).
Yy €Y ()
La loi de X est appelée premieére loi marginale du couple (X,Y).

e Pour tout y; € Y(Q),

P(Y=y;)= > P(X=z|n[y =y).
2, €X(Q)

La loi de Y est appelée seconde loi marginale du couple (X,Y).

Démonstration. A compléter. O

Remarque 1.2.1. Dans le cas fini, P(Y = y;) est la somme de la premiere colonne du tableau donnant
la loi conjointe. De méme pour P(Y = y;) avec j > 1, et pour P(X = ;) (avec ¢ > 1) qui est la
somme de la i-éme ligne du tableau donnant la loi conjointe.

On peut compléter le tableau de la fagon suivante :

(X,Y) Y1 Y2 e UYm, Somme
T D11 D12 e Dim P(X =)
2 D21 D22 e Dom P(X = z3)
Tn Pnl Pn2 c Pnm P(X = -'En)

Somme P(Y =) P(Y =y) e P(Y =ym) 1

Ezemple 1.2.2. Dans 'exemple 1.1.3, on obtient les lois marginales :

(X, Y) ]. 2 3 4 Somme
T T
T T S R
3 15 15 15 0 15
1 P P P T 7
16 16 16 16 16
Somme £ 2 3 L 1
16 16 16 16
i 1 2 3 4
T 3 5 7
P(X =1i) 15 16 16 16
j 1 9 3 4
_ 7 5 3 1
P =) 16 16 16 16

Simulation informatique : & partir de la matrice contenant 1’estimation des probabilités de la loi du

couple, on fait les sommes en ligne ou en colonne pour obtenir les estimations des probabilités pour
XetY:

On reprend le début du programme qui nous a servi a simuler la loi du couple (X,Y).
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mathplotlib.pyplot as plt

i LoiX=[0]*4
B LoiY=[0]x*4

fi
20 s

# he
o Wi

NN NN

i
LoiX [
LoiY [

j

il
i]

(4):
LoiX[i]=LoiX[i] + Loil[i,j]
LoiY[i]=LoiY[i] + Loil[j,il]

(LoiX ,LoiY)

g =
= [1,2,
ight =
dth=0.2

B plt.show ()

3,4]
LoiY

plt.figure ()

:plt.bar(x,height,width,color=’darkviolet’)

0.43

0.069

Loi de X Loide Y
0.4 0.4
03 03
0.2 0.2
01 01
Do = . . . ; ; ; 0.0 ; II—-
10 15 20 25 30 15 40 10 15 20 25 30 35 40
Ezemple 1.2.3. Dans 'exemple 1.1.4, on obtient les lois marginales :
(X, Y) 0 1 2 Somme .
0 0 i i T 1 0 1 2 3
3 13 4 13 . 4 18 12 1
! 5 % i m || PE=1] = | 3 3 5]
9 6 6 0 12
35 5 ; 35 j 0 1 2
3 3 3 — 0 _ 2 20 _ 4 5 _ 1
15 g = B PV=)] =7 | 5=7 | =7
Somme 35 35 35
Ezemple 1.2.4. Dans 'exemple 1.1.5, on obtient la loi marginale de Y :
J 0 1 2
— I | 6 T _— 59 9 2 _— 57 9 _— 9
]j(yr——]) 5 +-§g +_i§3 = 195 O‘+'§g +_i§5 = 195 0+0+ 125 — 195
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Ezemple 1.2.5. Dans I'exemple 1.1.6, les lois marginales sont données par la formule des probabilités
totales. On obtient :

e Pouri>1:

+oo
PX=i) = S P(X=in[y=j)
j=2

+oo
— Z p2qj—2

j=i+1

—+o0
_ 2 k+i—1
= pgq

. +w
_ quz—l Z qk
k=0

2 i—1
P q -
—4q

Ce n’est pas une surprise, car X suit la loi géométrique de parametre p (rang du premier succes
dans une répétition d’une infinité d’épreuves de Bernoulli identiques et indépendantes, et dont
le succes ”obtenir Pile” a pour probabilité p.)

e Pour j > 2:

+o00 7j—1
P(Y=j)=) P(IX=dn[Y =4)=> p¢d > =0G—-1p’¢ >
=1 =1

Exercice type concours.
i .
2T On dispose de X

boules numérotées de 1 & X dans une urne. On effectue un tirage, et on note Y le numéro de la
boule tirée.

1. Vérifier que la loi de X est bien une loi de probabilité. Calculer F(X). On donne V(X) = 2.

2. Donner la loi conjointe de X et de Y.

Soit X une variable aléatoire telle que pour tout i € N*, P(X = i) =

3. Déterminer la loi de Y puis son espérance.

1.3. Lois conditionnelles.

Soit X et Y deux variables aléatoires définies sur le méme espace probabilisé (€2, A, P).

e Soit y; € Y(Q) fixé. La loi conditionnelle de X sachant [Y = y;] est définie par :
P(X =z N[y =y)

P(Y =y;) '
e Soit x; € X(Q) fixé. La loi conditionnelle de Y sachant [X = z;] est définie par :
P(IX =z Nn[Y =y;])

By =y,)(X = i) =

Pix—)(Y = yj) =
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On vérifie que les lois conditionnelles sont bien des lois de probabilités (cela tient au fait que les
probabilités conditionnelles sont bien des probabilités).

Dans les exercices on pourra utiliser cette relation pour trouver la loi conjointe si on a un moyen
simple de connaitre la loi conditionnelle.

Ezemple 1.3.1. Dans l'exemple 1.1.4, la loi conditionnelle de X sachant [V = 1] est donnée par le
tableau :

1 0
Py—1(X =1)

—_
[\

ol
I

Bl
=
Sle

0

Il
ol

1
10 20

QJ‘[\J
Sl
|
ot
o
ot

Ezemple 1.3.2. Dans lexemple 1.1.5, la loi conditionnelle de Y sachant [X = i| est une binomiale
de parametres i et % En effet, si [X = i, alors on lance i fois la méme piéce de monnaie dont la
probabilité de tomber sur pile vaut %, et Y désigne le nombre de piles obtenus.

En revanche, la loi de Y n’est pas binomiale.

Exercice type concours.

A un péage, on a en moyenne 20 voitures par heure, et 15 guichets. Le nombre N de voitures
passant pendant une heure suit une loi de Poisson. On suppose que les voitures choisissent au
hasard un guichet, et ce indépendamment les unes des autres. On note X le nombre de voitures
se présentant au péage n°l.

1. Donner le parametre de la loi de Poisson.

2. Quelle est la loi conditionnelle de X sachant [N = n]?
3. Déterminer la loi conjointe du couple (N, X).
4

. En déduire la loi marginale de X.

Ezercice 1.3.3. On tire simultanément deux jetons d’une urne contenant quatre jetons numérotées de
1 a 4. Soit X le plus petit et Y le plus grand des numéros obtenus.
1. Déterminer la loi conjointe et les lois marginales de X et Y.
2. X et Y sont-elles indépendantes ?
3. a. Déterminer la loi conditionnelle de Y lorsque le plus petit numéro tiré vaut 3.
b. Déterminer I'espérance et ’écart-type de Y lorsque le plus petit numéro tiré vaut 3.
4. Déterminer la loi conditionnelle de X lorsque le plus grand numéro tiré est pair.

5. Calculer Cov(X,Y).

1.4. Théoréme du transfert.

Théoreme : Théoreme du transfert

Soit X et Y deux variables aléatoires réelles discrétes et g une fonction numérique de deux
variables définie sur X (Q) x Y'(€2). Alors, sous réserve de convergence absolue (dans le cas infini),
la variable aléatoire Z = g(X,Y) admet une espérance qui vaut :

E(Z)= Y g(@,y)P(X =] N[Y =y).
z; EX(Q)
y; EY ()

En particulier (et sous réserve de convergence absolue), on a :

E(XY)= ) =z P([X ==]n[Y =y).
z; EX(Q)
y; €Y (Q)
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Exercice 1.4.1. Dans I'exemple 1.1.4, calculer E(X?2Y?3).

1.5. Covariance de deux variables aléatoires.

Proposition : Existence de £(XY) et de E((X +Y)?)
Soit X et Y deux variables aléatoires discretes définies sur le méme espace probabilisé (€2, A, P)
et admettant un moment d’ordre 2. Alors :

1. la variable aléatoire produit XY admet une espérance,

2. la variable aléatoire somme X + Y admet un moment d’ordre 2.

Démonstration. A compléter. O

Remarque 1.5.1. L’espérance E(XY') peut alors étre calculée grace au théoreme du transfert.

Soit X et Y deux variables aléatoires discrétes définies sur le méme espace probabilisé (€2, A, P)
et admettant une espérance. La covariance de X et Y est égale, sous réserve d’existence, a
I'espérance de la variable aléatoire (X — E(X))(Y — E(Y)) :

Cov(X,Y) = E((X — B(X))(Y - E(Y))).

Remarque 1.5.2 (Sens de la covariance). Si X et Y ont tendance & étre en méme temps au dessus
de leur moyenne, (ou en dessous), le nombre (X — E(X))(Y — E(Y)) est positif, et cela donne une
covariance positive. En revanche si (X — F(X)) et (Y — E(Y)) sont souvent de signes opposés, cela
donnera plutét une covariance négative. Une covariance positive signifie que les variables ont tendance
a évoluer ”dans le méme sens”, une covariance négative, qu’elles ont tendance a varier en sens opposés.

Théoreme : Formule de Kcenig-Huygens
Soit X et Y deux variables aléatoires discretes définies sur le méme espace probabilisé (€2, A, P)
et admettant un moment d’ordre 2. Alors :

Cov(X,Y) = E(XY) — E(X)E(Y).

Démonstration. A compléter. O

Ezercice 1.5.3. On reprend la situation de 'exemple 1.1.3 : on lance deux dés équilibrés a 4 faces, X
est le maximum des deux résultats et Y le minimum.
Estimation de la covariance de X et Y grace a la simulation :

Bl T=np.zeros ((4,4))
! i (4):
5 j (4):

6 Tli,jl=1i%j

8 EspXY=np. (Loi*T)
] EspX=np. (np.array(LoiX)*np.array([1,2,3,4]))
] EspY=np. (np.array(LoiY)*np.array([1,2,3,4]))

) Cov = EspXY-EspY*EspX
14 (Cov)

Montrer que Cov(X,Y) =22 (2 ~0,39).
Ezercice 1.5.4. Calculer Cov(X,Y’) dans 'exemple 1.1.4.
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Ezercice 1.5.5. Calculer Cov(X,Y’) dans 'exemple 1.1.6.

Proposition : Propriétés de la covariance
Soit X, Y et Z des variables aléatoires définies sur le méme espace probabilisé (€2, A, P) admet-
tant un moment d’ordre 2 et A un nombre réel. On a :

Si Y suit la loi certaine : Cov(X,Y) =0.

Si X et Y sont égales : Cov(X,X) = V(X).

Symétrie de la covariance : Cov(Y, X) = Cov(X,Y),

Bilinéarité de la covariance :

Cov(AX,Y) = ACov(X,Y) et Cov(X +Z,Y) =Cov(X,Y)+ Cov(Z,Y),
(linéarité a gauche)

Cov(X,\Y) = ACov(X,Y) et Cov(X,Y + Z) = Cov(X,Y) + Cov(X, 2),

(linéarité a droite).

= 50

Démonstration. A compléter.
d

Ezercice 1.5.6. Exprimer en fonction de Cov(X,Y), V(X) et V(Y) le nombre Cov(2X +3Y,Y — X).

Proposition : Variance de la somme de deux variables aléatoires discretes
Soit X et Y deux variables aléatoires discrétes définies sur le méme espace probabilisé (€2, A, P)
et admettant un moment d’ordre 2. Alors la variable aléatoire X 4+ Y admet une variance, qui
vaut :

V(X +Y) =V(X)+ V(Y) + 2Cov(X,Y).

Démonstration. X et Y admettent un moment d’ordre 2, donc X + Y également d’apres la proposition
1.5. Il vient ensuite, en utilisant la linéarité de ’espérance :
VIX+Y)=E(X+Y)%) - (B(X+Y))’ = BE(X* +Y? 4 2XY) — (B(X) + E(Y))?

2

= B(X?) + E(Y?) + 2BE(XY) — (E(X))* - (E(Y))? =2B(X)E(Y) = V(X) + V(Y) + 2Cov(X, Y).

O

Corollaire : Covariance de X, Y en fonction des variances de X, YV et X £Y
Soit X et Y deux variables aléatoires discrétes définies sur le méme espace probabilisé (€2, A, P)

et admettant un moment d’ordre 2. Alors :

Cov(X,Y) = %(V(X LY) - V(X) - V()

Cov(X,Y) = %(V(X) +V(Y)-V(X-Y))

Démonstration. A compléter.

Exercice type concours.
Soit X et Y deux variables aléatoires suivant une loi de Poisson de parametres respectifs A et p.
Soit U=X+YetV=X-Y.

1. Donner la valeur de la covariance de U et V.

2. Pour quelle valeur des parametres A et p cette covariance est-elle nulle ? Que peut-on en
déduire sur I'indépendance de U et V' 7
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1.6. Coefficient de corrélation linéaire.

Soit X et Y deux variables aléatoires définies sur le méme espace probabilisé et admettant une
variance non nulle. Le nombre réel :

Cov(X,Y)
o(X)o(Y)
est appelé coefficient de corrélation linéaire de X et Y.

p(X,Y) =

Ezemple 1.6.1. Dans 'exemple 1.1.3 (on lance deux dés équilibrés a 4 faces, X est le maximum des
deux résultats et Y le minimum), estimation du coefficient de corrélation linéaire :

...

m2X=sum(np.array (LoiX) * np.array ([1:4]) *x*2)
m2X=sum(np.array(LoiX) * np.array ([1:4]) *x*2)
varX=m2X -espX **2

varY=m2Y-espY **2

rho=cov/sqrt (varX*varY)

print (’Le coefficient de correlation lineaire empirique est

Rappel des lois marginales :

| i 1 2 3 4 J 1 2 3 4
_ 1 3 5 7 _ 7 5 3 1
| P(X=19)] 1q 16 16 16 PY =j)| 15 16 i6 16
Les calculs donnent :
25 85 55
EX)=" EX*)=—= e VX)=_".
(X) 3 (X9) g © (X) o
15 35 55
EY)=— EYH== e VY)=—
(Y) 3 (Y9) g °© (Y) o
5
= — ~0.45
P=11

Ezercice 1.6.2. Calculer p(X,Y) dans 'exemple 1.1.4.

Théoreme : Bornes sur le coefficient de corrélation linéaire.
Soit X et Y deux variables aléatoires définies sur le méme espace probabilisé et admettant une
variance non nulle. Alors :
avec égalité en —1 ou en 1 si, et seulement s’il existe deux réels a et b tels que Y = aX + b,
presque stirement.

Démonstration. A compléter.

Ezercice 1.6.3. Que valent p(X, X), p(X,2X) et p(X,—-X)?

On dit que deux variables aléatoires X et Y sont non corrélées lorsque Cov(X,Y) = 0 (ou
p(X,Y) = 0).
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Exzxercice 1.6.4. n personnes se répartissent au hasard dans trois pieces A, B et C d’un appartement
(n € N*). Chaque piece peut contenir un nombre quelconque de personnes.

On désigne par X, Y et Z les variables aléatoires prenant pour valeurs respectives le nombre de
personnes dans les pieces A, B et C.

1. Déterminer les loisde X, Y, Z, X +Y.

2. Donner le coefficient de corrélation linéaire du couple (X,Y).

Exercice type concours.
Le nombre X de candidats a un examen suit une loi de Poisson. Ils sont en moyenne M a passer
cet examen. Chaque candidat a une probabilité p non nulle de réussir I’examen, et on suppose
que les réussites des différents candidats sont indépendantes. On note Y le nombre de regus, et
Z le nombre de recalés.

1. Déterminer la loi du couple (X,Y).
2. En déduire la loi de Y, puis la loi de Z.

3. Ecrire E(XY) sous la forme d’une somme que I’on transformera mais qu’on ne calculera
pas.

4. Montrer que Y et Z sont indépendantes.
5. Déduire V(X +Y), Cov(X,Y), p(X,Y) puis E(XY).

Ezercice 1.6.5. On considere deux variables aléatoires indépendantes X et Y suivant des lois binomiales
de paramétres respectifs (1;3) et (2,3).

1. Donner la loi du couple (X,Y) dans un tableau.

2. On note Z = vV X2 +Y?2 . Calculer 'espérance et la variance de Z & I’aide de la loi du couple
(X,Y).

3. Donner la loi du couple (X, Z) puis la loi de Z.

4. Calculer le coefficient de corrélation linéaire de (X, Z). X et Z sont-elles indépendantes ?

2. INDEPENDANCE DES VARIABLES ALEATOIRES DISCRETES

2.1. Indépendance de deux variables aléatoires discrétes.

Soit X et Y deux variables aléatoires définies sur le méme espace probabilisé (€2,.4, P). On dit
que X et Y sont indépendantes lorsque, pour tout z; € X(Q) et y; € Y(2), on a :

Remarque 2.1.1. e Deux variables aléatoires X et Y sont donc indépendantes si les événements
X = x| et |[Y = y;] sont indépendants, pour toutes valeurs de x; et y; prises par X et Y
[ Y; p ; D y; prises p
respectivement.

e Si deux variables aléatoires sont issues d’expériences n’influant pas 'une sur 'autre, alors elles
sont indépendantes.

Proposition : Variables aléatoires indépendantes
Soit X et Y deux variables aléatoires discretes indépendantes définies sur le méme espace
probabilisé (22, A, P).
1. Si f et g sont deux fonctions définies respectivement sur X (2) et Y (£2), alors f(X) et
g(Y') sont encore indépendantes.
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2. P([X € A]n[Y € B]) = P(X € A)P(Y € B) pour toute partie A C X(f2) et toute partie
B CY(Q).

Ezemple 2.1.2. Si X et Y sont indépendantes, alors X2 et Y , X2 et Y2, --- sont aussi indépendantes.

Méthode : Loi conjointe de deux variables aléatoires discrétes indépendantes
Dans le cas o X et Y sont des variables aléatoires indépendantes, on peut obtenir la loi conjointe
du couple (X,Y) a partir des deux lois de X et Y en multipliant les probabilités.
Réciproquement, on peut voir dans le tableau ou avec la loi conjointe et les lois de X et Y si
les variables aléatoires sont indépendantes. Il suffit de vérifier la condition pour chaque x;, y;.

Ezemple 2.1.3. 1l y a indépendance si I’'on répete la méme expérience sans changer les conditions. Par
exemple, pour le lancer d’'un méme dé équilibré deux fois de suite, si X est le numéro du premier
lancer et Y le numéro du second, alors X et Y sont indépendantes. En effet :

POX =iy =jl) = =g x¢

= — P(X = i)P(Y = j)

=

pour tout couple (i,5) € {1,2,3,4,5,6}°.

Ezemple 2.1.4. Dans 'exemple 1.1.4, X et Y ne sont pas indépendantes. En effet, d’apres le tableau
de la loi conjointe obtenu, on a :

Théoreme : Covariance de deux variables aléatoires indépendantes
Soit X et Y deux variables aléatoires discretes définies sur le méme espace probabilisé. Si X et
Y sont indépendantes, alors :

1. E(XY) = E(X)E(Y),

2. Cov(X,Y) =0,

3. p(X,Y) =0,

4. V(X +Y) = V(X)+ V().

Démonstration. A compléter. O

Remarque 2.1.5. Attention : la réciproque est fausse. Si Cov(X,Y) = 0, X et Y ne sont pas
forcément indépendantes. Par exemple, si X — U({—1,0,1}) et Y = 1 — |X]|, alors X et ¥
ne sont pas indépendantes, car :
P(X=1]n[y =1]) = P(X =1]n[X =0]) =0,
et : 1
— 0.
X 5 #*

P(X=1)x P(Y = 1) = P(X = 1) x P(X=0) = 3 x 5
Y E(XY)-E(X)E(Y) =

Mais XY = X (1—|X|) = 0donc E(XY) =0, et E(X) = 0 donc Cov(X,Y)
0.

On pourra en revanche utiliser la contraposée : si Cov(X,Y) # 0, alors X et Y ne sont pas
indépendantes.

Méthode : Comment montrer que X et Y sont ou ne sont pas indépendantes
Pour montrer que X et Y sont indépendantes :

e On peut le voir directement avec 1’expérience aléatoire et la définition de X et Y ;

e On montre que pour tout z; € X (Q2) et pour tout y; € Y (Q), les réels P([X = z;]N[Y =
y;]) et P(X = z;)P(Y = y;) sont égaux.
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Pour montrer que X et Y ne sont pas indépendantes :

e On trouve une valeur z; € X() et une valeur y; € Y () telles que les réels P([X =
;] N[Y =y;]) et P(X = 2;)P(Y = y;) ne sont pas égaux (penser aux zéros dans la loi
conjointe) ;

e On montre que E(XY) # E(X)E(Y);
e On montre que Cov(X,Y) # 0;
e On montre que V(X +Y) # V(X) + V(Y).

2.2. Indépendance d’une famille ou d’une suite de variables aléatoires discrétes.

On dit que les variables aléatoires discretes X1, X, ..., X, définies sur le méme espace probabilité
(Q, A, P) sont (mutuellement) indépendantes si, et seulement si, pour toute liste de valeurs
(z1,22,...,2y) prises par (X1, Xs,...,X,), on a:

P((X1=z]N[Xe =z N...N[X, = z,]) = P(Xq1 = 21)P(Xg = 22) ... P(Xp = zn).

Soit (X, )nen une suite de variables aléatoires discretes définies sur le méme espace probabilisé
(©, A, P). On dit que les variables aléatoires X,, sont indépendantes si, et seulement si toute
sous-famille finie est constituée de variables aléatoires indépendantes, au sens de la définition
précédente.

Remarque 2.2.1. Si une suite (X, )nen ou une famille (X1, Xo,..., X,,) sont constituées de variables
aléatoires discretes indépendantes, alors, en particulier, X; et X; sont indépendantes pour tout i # j.

Attention, la réciproque est fausse ! Ce n’est pas parce que les variables sont deux & deux indépendantes
qu’elles sont mutuellement indépendantes.

Proposition : Variance d’'une somme de n variables aléatoires indépendantes
Soit X1, X, ..., X, des variables aléatoires discretes indépendantes définies sur le méme espace
probabilisé et admettant un moment d’ordre 2. On a alors :

V(X1 +Xo4 ...+ Xp) = V(X)) + V(X2) + ... + V(X,).

Théoreme : Lemme des coalitions
Soit
X1, X9, ... Xpy Xpt1,-- ., Xn
des variables aléatoires discretes et indépendantes définies sur le méme espace probabilisé
(Q, A, P). Alors, pour toute fonction f et toute fonction g bien définies, les variables aléatoires
f(X1, Xo,...,X}) et g(Xpt1,...,X,) sont indépendantes.

Ezemple 2.2.2. Soit X,Y, Z T quatre variables aléatoires indépendantes. Alors XY et Z sont aussi
indépendantes, Ze¥ et X — T? sont indépendantes, X, Y — Z et T° sont indépendantes.

2.3. Calculs de probabilités a I’aide de la loi conjointe.
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Méthode : Autres calculs : P(X =Y), P(X <Y)...
Utiliser la formules des probabilités totales pour utiliser la loi conjointe et I'indépendance, le cas
échéant. Par exemple :

2, €X(Q)

= ) P(X=zn[Y=ux))
Z‘ZEX(Q)

= Y P(X=g)xPY =) siXetY indépendantes
IITZEX(Q)

Y €Y ()

= > Py=yln[X=y)
y; €Y ()

= Z P(Y =y;) x P(X =y;) siX etY indépendantes
y; €Y ()

2, €X(Q)

= P(X =z])N[Y > x])
Z‘ZEX(Q)

= Y P(X=g)xPY >x) siXetY indépendantes
2, €X(Q)

Yy €Y ()

= Z P([Y:yj]m[ng]])
y;€Y(Q)

= Z P(Y =y;) x P(X <y;) siX etY indépendantes
y; €Y (Q)

P(X=Y)= Z P([X =2;)N[X =Y]) avec ensemble complet d’événements ([X = xi])axEX(Q)

P(X=Y)= Z P([Y =y;]N[X =Y]) avec ensemble complet d’événements ([Y = yj])yjeY(Q)

P(X<Y)= Z P([X =2;)N[X <Y]) avec ensemble complet d’événements ([X = mi])xieX(Q)

P(X<KY)= Z P([Y =y;]N[X <Y]) avec ensemble complet d’événements ([Y = yj])yjeY(Q)

Ezxercice 2.3.1. Soit X et Y deux variables indépendantes de loi géométrique de parametre p €]0; 1[.
Calculer P(X =Y) et P(X <Y).

Exercice type concours.
Une boite contient 3 boules blanches et 2 boules noires. On y effectue indéfiniment des tirages
avec remise de 2 boules prises simultanément. On définit les évenements :

e A, : 7on obtient deux boules de couleurs différentes au n® tirage”,

e B, : ”on obtient deux boules blanches au n® tirage”.

1. Calculer P(A,) et P(B,).

2. On note X le numéro du tirage au cours duquel on obtient pour la premiere fois deux
boules de couleurs différentes, et Y le numéro du tirage au cours duquel on obtient pour
la premiere fois deux boules blanches.

a. Déterminer les lois de X, Y et leurs espérances.

b. Déterminer la loi du couple (X,Y).
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c. En déduire P(X <Y).

3. OPERATIONS SUR LES VARIABLES ALEATOIRES INDEPENDANTES

3.1. Somme de deux variables aléatoires indépendantes.

Méthode : Loi de probabilité de la somme de deux variables aléatoires discretes
Si X et Y sont deux variables aléatoires indépendantes, notons S = X + Y eur somme, avec

S(Q) = {si}. Alors :

P(S =s) = Z P([X =z;]N[S=sk]) avec ensemble complet d’événements ([X = z;])
JL‘ZEX(Q)

= Y P(X=g]n[X+Y = s))

2, €X(Q)
= Z P([X:xi]ﬂ[Y:sk—xi])
z,€X(Q)

= Z P(X ) x P(Y =s, —x;) siX etY indépendantes
z,€X(Q)

z;€X(Q)

La somme porte en réalité sur les termes z; € X (Q) tels que s —z; € Y(Q)

P(S =s) = Z P([Y =y;]N[S=sk]) avec ensemble complet d’événements ([Y =
Y; €Y (Q)

= > P N[X +Y = s))
?JJEY(Q)

= Y P(IY =yln[X = s —y))
Y €Y (Q)

= Z P(Y =y;) x P(X =5, —y;) siX etY indépendantes
y; €Y ()

Yil)y,ev )

La somme porte en réalité sur les termes y; € X(Q) tels que s —y; € X(2)
Dans le cas ou les variables sont a valeurs entiéres, on peut aussi dénombrer toutes les possi-
bilités de valeurs pour X et Y pour avoir X +Y =k :

P(S=k)= > P(X=dn] ZP Y =k —1])

i+ji=k
= ZP(X =i)x P(Y =k—14) siX etY indépendantes
P(S=k)= > P(X=4n[Y =) =ZP([X=k—j]ﬂ[Y=j])
= ZP =k—j)xP(Y=j5) siX etY indépendantes

La notation Y signifie que la somme porte sur tous les couples d’entiers positifs ou nuls
i+i=k
(,7) tels que i + j = k.

Ezxemple 3.1.1. On lance deux dés réguliers a 4 faces et on note S la somme des résultats obtenus.
Donner la loi de S.
Simulation informatique :
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import numpy.random as rd
import numpy as np
import matplotlib.pyplot as plt

def somme () :
= rd.randint (1, 5, 2)
= z[0]
= z[1]
return x+y

1000

[0]xN
k in range (N):
T[k]l=somme ()

.hist (T, rwidth=0.2, density = True, range=(2,8), bins=7)
.show ()

030

025

020
015
010
005 J L
000 T T T T
4 5 3 7

o]

Méthode : Espérance de la somme de deux variables aléatoires discretes
Soit X et Y deux variables aléatoires discretes et S = X + Y leur somme. Pour calculer E(S),
on peut :

e Utiliser la linéarité : E(X +Y) = E(X) + E(Y).

e Utiliser la loi de S et la définition de l'espérance : E(S) = > s P(S = sg).
sEES(Q)

e Utiliser la loi conjointe et le théoreme du transfert : E(X +Y) = > (z; + y;)P([X =

=] N Y = ). -
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Lemme 3.1.2. Formule de Vandermonde Soit m,n et k trois entiers naturels. Alors
> () -(")
it+j=k ! J k

avec la convention (g) =0sip<Ooup>gq.
On peut aussi écrire :

O E0-01)

Démonstration. A compléter. a

Théoreme : Stabilité de la loi binomiale pour la somme
Soit X et Y deux variables aléatoires indépendantes définies sur le méme espace probabilisé
(Q, A, P), suivant des lois binomiales de parameétres respectifs (m,p) et (n,p). Alors la somme
X + Y suit la loi binomiale de parametres (m + n,p).

Pour la preuve, il suffit de se souvenir que la loi binomiale est la loi de la somme de variables de
Bernouilli indépendantes. Voyons-en une autre par un calcul qui utilise la formule de Vandermonde :

Démonstration. A compléter. O

Remarque 3.1.3. En particulier, si m = n = 1 : la somme de deux variables aléatoires indépendantes
suivant la méme loi de Bernoulli de parametre p est une variable aléatoire suivant une loi binomiale
B(2,p). En généralisant (par récurrence) :

Corollaire : Somme de n variables aléatoires indépendantes de méme loi de Bernoulli
Soit n > 2, p €]0;1[ et X1, Xo,...,X,, des variables aléatoires indépendantes définies sur le
méme espace probabilisé (€2,.A, P) et suivant la méme loi de Bernoulli de parametre p. Alors
S, = X1+ Xo+ ...+ X, est une variable aléatoire de loi binomiale de parametres n et p :
Sy < B(n,p).

En particulier, et grace a I'indépendance, on retrouve :

V(Sn) =Y V(Xi) = np(1 - p).
=1

Ainsi : la somme de n variables aléatoires de Bernoulli indépendantes et de méme espérance
p suit la loi binomiale B(n, p).

La preuve est bien siir une preuve par récurrence basée sur le résultat précédent.

Théoreme : Stabilité de la loi de Poisson pour la somme
Soit X et Y deux variables aléatoires indépendantes définies sur le méme espace probabilisé
(Q, A, P), suivant des lois de Poisson de parametres respectifs A et p. Alors la somme X + Y
suit une loi de Poisson de parametre A + p.

Ce résultat n’est pas tres surprenant si on pense aux modeles qui utilisent la loi de Poisson, comme
la loi d’un temps d’attente. Imaginons le cas d’un client qui attend son tour & un guichet et que son
temps d’attente est modélisée par une loi de Poisson. Si le client doit attendre successivement a deux
guichets, chacun des temps d’attente étant modélisé par une loi de Poisson de parametre A\ puis p,
alors son temps d’attente total (modélisé par la somme des deux lois de Poisson) suit une loi de Poisson
de parametre A + p. Vérifions maintenant cette intuition par le calcul.

Démonstration. A compléter.
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3.2. Maximum ou minimum de deux variables aléatoires indépendantes.

Soit X et Y deux variables aléatoires réelles discretes définies sur le méme espace probabilisé
(©,A, P). On note Z = max(X,Y) (resp. T = min(X,Y)) le maximum (resp. minimum) des
deux variables aléatoires X et Y :

X iX2Y
e 7 =max(X,Y) est définie comme suit : Z = { S?

Y  sinon

X i X<Y
e T'=min(X,Y) est définie comme suit : T' = { S%

Y  sinon

max(X,Y) et min(X,Y’) sont deux variables aléatoires définies sur ’espace probabilisé (€2, A, P)

S’il n’est pas facile d’expliciter directement la loi des variables minimum et maximum, il est en
revanche plus facile de trouver les fonctions de répartition car il existe une formule générale.

Proposition : Fonction de répartition du maximum ou minimum de deux variables
indépendantes

Soit X et Y deux variables aléatoires réelles discretes indépendantes définies sur le méme
espace probabilisé (€2, A, P). Soit Z = max(X,Y) et T'= min(X,Y"). Alors, pour tout z € R, on
a:

| Fz(z) = Fx(z) x Fy(z)| et 1— Pr(z) = (1 - Fx()) x (1 - Fy(z)).

Démonstration. A compléter. O

Méthode : Loi du maximum ou du minimum de deux variables indépendantes
On cherche la fonction de répartition de Z = max(X,Y) ou 7" = min(X,Y), puis on calcule
la loi de probabilité de Z et de T en appliquant la méthode permettant de retrouver la loi a
partir de la fonction de répartition. Par exemple, si X et Y sont a valeurs entieres : P(Z = k) =
Fz(k) — Fz(k — 1) pour tout k € Z(Q).

Ezemple 3.2.1. Donner la loi du maximum de deux variables aléatoires indépendantes de loi ¢/ ({1, 2, 3,4}).

3.3. Produit de deux variables aléatoires indépendantes.

Méthode : Loi de probabilité du produit de deux variables aléatoires
Si X et Y sont deux variables aléatoires réelles définies sur le méme espace probabilisé (2, .4, P),
la loi de leur produit Z = XY est donnée par :

P(XY =z)= ), 6 P(X=aln[Y=y))

Xq XYj=Z2k

Si, de plus, X et Y sont a valeurs entieres strictement positives et indépendantes, on a :

P(XY =k) = Y PX=4PY =)
ixj=k

= ZP(X:i)P <Y: f)
= ZP(X: ;’C) P(Y = j).

(la somme portant sur les valeurs de i et j pour lesquelles P(X = i) et P(Y = j) sont toutes
deux non nulles et telles que i X j = k).




CHAPITRE IX 20

| On peut également appliquer la formule des probabilités totales comme dans le cas de S =
X+Y.

Ezemple 3.3.1. On lance deux dés réguliers a 4 faces et on note M le produit des résultats obtenus.
Donner la loi de M.
Simulation informatique :

1 numpy .random as rd
2 numpy as np
3 matplotlib.pyplot as plt

5 produit () :

6 = rd.randint (1, 5, 2)
7 = z[0]

8 A [1]

9 X*y

14 1000

16 [0]*N
17 k (N):
18 T[k]=produit ()

20 .hist (T, rwidth=0.2, density = True, =(1,17), bins=16, align
=’left’)
21 .show ()

1.
2.
3.
4.
6.
8.
9.
1

1

O OO O OO O OO

0.200
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0.150

0125

0.100
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0.000
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Méthode : Espérance du produit de deux variables aléatoires discretes

Soit X et Y deux variables aléatoires discretes et Z = XY leur produit. Pour calculer E(Z), on
peut :
e Calculer E(X) x E(Y) si X et Y sont indépendantes, car E(XY) = E(X)E(Y) (i.e.
Cov(X,Y) =0).
e Utiliser la loi de Z et la définition de 'espérance : E(Z) = Y, zxP(Z = z).
ZkGZ(Q)
e Utiliser la loi conjointe et le théoréme du transfert : E(XY) = > zy;P([X = z;]N[Y =
Zi,Yj
vil)-

Ezercice 3.3.2. Avec les notations de I'exemple 3.3.1, calculer E(XY') de trois fagons différentes.

Exercice type concours.
ECRICOME 2022 Exercice 3

Partie 1

On dispose de trois urnes Uy, Uy et Us et d’une infinité de jetons numérotés 1,2,3,...

On répartit un par un les jetons dans les urnes : pour chaque jeton, on choisit au hasard et avec
équiprobabilité une des trois urnes dans laquelle on place le jeton. Le placement de chaque jeton
est indépendant de tous les autres jetons, et la capacité des urnes en jetons n’est pas limitée.

Pour tout entier naturel n, non nul, on note X,, (respectivement Y,,, Z,) le nombre de jetons
présents dans 1'urne 1 (respectivement l'urne 2, 'urne 3) apres avoir réparti les n premiers jetons.

Pour tout entier naturel non nul, on note V,, I’événement : ” Apres la répartition des n premiers
jetons, au moins une urne reste vide”.

1. Soit n € N*,

a. Justifier que X,, Y, et Z,, suivent la méme loi binomiale dont on précisera les pa-
rametres.

Expliciter P(X,, = 0) et P(X,, = n).
Justifier que (Y, =0) N (Z, =0) = (X, = n).

Exprimer 'événement V,, a l'aide des événements (X, = 0), (Y, =0) et (Z, = 0).

P(V,) = 3 @)n 3 (;)n

2. On note V I’événement ” Au moins 1'une des trois urnes reste toujours vide”.

© &0

En déduire que

Exprimer 1’événement V' a 1’aide des événements V;,, puis démontrer que P(V') = 0.

3. Soit T' la variable aléatoire égale au nombre de jetons nécessaires pour que, pour la
premiere fois, chaque urne contienne au moins un jeton.

a. Compléter le programme Python suivant pour qu’il simule le placement des jetons
jusqu’au moment ot chaque urne contient au moins un jeton, et pour qu’il renvoie la
valeur prise par la variable aléatoire T
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import numpy.random as rd

def TQ):
X=0
Y=0
Z=0
n=0
L=[X,Y,Z]
while
i =
L[i]

b. Ecrire un programme Python qui simule 10 000 fois la variable aléatoire T et qui
renvoie une valeur approchée de son espérance (en supposant pour le moment que son
espérance existe).

4. Déterminer T'(Q2).
5. Démontrer que pour tout n € T(Q),
P(T =n) =P(V,—1) — P(V,).
6. Démontrer que la variable aléatoire admet une espérance et calculer cette espérance.

Partie I1
Pour tout entier naturel n non nul, on note W,, la variable aléatoire égale au nombre d’urne(s)
encore vide(s) apres le placement des n premiers jetons.

7. a. Donner la loi du couple (X3, Wa).
b. En déduire la loi de W3 et calculer son espérance.
c. Calculer la covariance de Xs et Whs.

d. Les variables aléatoires Xy et W5 sont-elles indépendantes ?

Soit n un entier supérieur ou égal a 3.
8. Déterminer W,,(2).

9. Pour i € [1, 3], on note W, ; la variable aléatoire égale a 1 si I'urne i est encore vide apres
le placement des n premiers jetons, et qui vaut 0 sinon.

a. Montrer que pour tout i € [1,3], E(W,,) = (3)".

b. Exprimer la variable aléatoire W, en fonction des variables aléatoires W, 1, Wy, 2 et
I/Vn37

c. Exprimer alors E(W,,) en fonction de n.
10. Démontrer que P (X, =n)N (W, =2)) = (3)".
Pour tout k € [1,n — 1], quelle est la valeur de P ((X,, = k)N (W,, =2))?
11. Démontrer que pour tout k € [1,n — 1],

P((Xn = k) N (Wn = 1)) = w
Que vaut P ((X,, =n)N(W,, =1))7

12. Démontrer que

E(X,Wy) = 2B (X = 1) (1 (Wo = 2)) + 3 KB (X = K) 1 (W = 1)).
k=1
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13. Montrer alors que E(X,W,,) =n (%)n, puis calculer la covariance de X,, et W,,.

14. Interpréter le résultat obtenu a la question précédente.

4. SUJETS D’ANNALES EN LIEN AVEC CE CHAPITRE.

Tous les sujets sur listés dans le cours de révisions sur les variables discrétes contiennent aussi des
questions sur des couples de lois discretes.
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